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Abstract
The European Space Agency Aeolus mission launched the first-of-its-kind
space-borne Doppler wind lidar in August 2018. The Aeolus Level-2B (L2B) Hor-
izontal Line-of-Sight (HLOS) wind observations are integrated into the NOAA
Finite-Volume Cubed-Sphere Global Forecast System (FV3GFS). Components of
the data assimilation system are optimized to increase the forecast impact from
these Aeolus observations. Three observing-system experiments (OSEs) are per-
formed using the Aeolus L2B HLOS winds for the period of August 2–September
16, 2019: a baseline experiment assimilating all observations that are opera-
tionally assimilated in NOAA’s FV3GFS but without Aeolus; an experiment
adding the Aeolus L2B HLOS winds on top of the baseline configuration; and an
experiment adding the Aeolus L2B HLOS winds on top of the baseline but also
including a total least-squares (TLS) regression bias correction applied to the
HLOS winds. The variances of the Aeolus HLOS wind random errors (i.e., obser-
vation errors) are estimated using the Hollingsworth–Lonnberg (HL) method.
Results from both OSEs demonstrate positive impact of Aeolus L2B HLOS winds
on the NOAA global forecast. The largest impact is seen in the tropical upper
troposphere and lower stratosphere where the Day 1–3 wind vector forecast
root-mean-square error (RMSE) is reduced by up to 4%. Additionally, the assim-
ilation of Aeolus impacts the steering currents ambient to tropical cyclones,
resulting in a 15% reduction in track forecast error in the Eastern Pacific basin
Day 2–5 forecasts, and a 5% and 20% reduction in track forecast error in the
Atlantic basin at Day 2 and Day 5, respectively. In most cases, the additional TLS
bias correction increases the positive impact of Aeolus data assimilation in the
NOAA global numerical weather prediction (NWP) system when compared to
the assimilation of Aeolus without bias correction.
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1 INTRODUCTION

Atmospheric wind plays a critical role in weather
and weather forecasting; from boundary-layer surface

interactions and mixing, to transport of moisture, aerosols,
and atmospheric constituents, and influence on the for-
mation and evolution of extreme weather events such as
hurricanes and winter storms. Accurate representation
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of the three-dimensional wind field at forecast initial-
ization, through the assimilation of wind observations
as well as other observations related to wind through
conservative quantities or advection, is important for
short- and medium-range forecast skill (e.g., Bengtsson
et al., 2005). Currently, the global observing system pro-
vides wind observations to operational National Oceanic
and Atmospheric Administration (NOAA) global numer-
ical weather prediction (NWP) from radiosonde, surface
stations and ocean buoys, from aircraft, and from space
including ocean surface vector winds from scatterom-
eters, and Atmospheric Motion Vectors (AMVs) from
geostationary and polar-orbiting infrared imagers and
sounders (Kleist et al., 2009; Bi et al., 2011). Apart from
wind profile observations from rawinsondes and aircraft
near major airports, which have limited geographic cover-
age, these wind observations are confined to a horizontal
plane, with minimal information about the variation of
the wind in the vertical dimension. Recent studies have
highlighted the gap in wind profile (3D-wind) observa-
tions, and the expected benefits both for NWP as well as
boundary-layer physics understanding (Anthes et al. 2019,
National Academies of Sciences, 2018). To address these
gaps, Doppler wind lidar technology on a space-borne
platform has been pursued to measure 3D-winds, and was
realized with the Aeolus mission of the European Space
Agency (ESA).

Aeolus was launched in August 2018, providing the
first observations of wind profiles from a space-borne
Doppler wind lidar (Stoffelen et al., 2005; Reitebuch
et al., 2009; Reitebuch, 2012; Straume-Lindner, 2018). Aeo-
lus measures both Rayleigh (i.e., molecular) and Mie
(e.g., clouds and aerosols) backscatter to derive Horizontal
Line-of-Sight (HLOS) wind profiles throughout the tropo-
sphere and lower stratosphere (Straume et al., 2020). The
Aeolus HLOS Level-2B (L2B) winds have been evaluated
and assimilated in operational data assimilation systems at
NWP centers worldwide and have demonstrated positive
impact on global weather forecasts (Cress, 2020; Rennie
et al., 2021) but to date only neutral impacts have been
reported for regional NWP (e.g., Hagelin et al., 2021). As
part of the Aeolus calibration and validation effort, as
well as to support planning of the NOAA next-generation
satellite architecture, the value of Aeolus observations on
NOAA’s mission to understand and predict changes in cli-
mate and weather has been investigated. The overall study
includes the assessment of Aeolus data quality, the integra-
tion of Aeolus into NOAA regional and global NWP, and
the ability of Aeolus observations to improve the use and
impact of other observation types assimilated in NWP (e.g.,
AMVs). The present study focuses on the impact of Aeo-
lus winds on global NWP, while other recent studies have
focused on the quality and added value of Aeolus winds to

other observing systems (e.g., AMVs) (Hoffman et al., 2022;
Lukens et al., 2022).

The approach to assimilating Aeolus data in NOAA
global NWP, specifically the Finite-Volume Cubed-Sphere
Global Forecast System (FV3GFS), including the
random-error estimates of Aeolus winds, bias correction,
and quality control, is given in Section 2. The impact of
Aeolus winds on NOAA global forecasts including fore-
casts of tropical cyclone tracks are examined in Section 3.
A summary of the findings and conclusions on the impact
of Aeolus winds on NOAA global forecasts are presented
in Section 4.

2 METHODOLOGY

2.1 Data and model

Throughout the lifetime of the Aeolus mission, various
versions of the L2B dataset have been made available
for evaluation and data assimilation impact studies.
HLOS wind measurements are taken by the Atmospheric
LAser Doppler INstrument (ALADIN) ultraviolet (UV)
laser operating at 355 nm with receivers measuring both
Rayleigh and Mie backscatter (Andersson et al., 2008;
Rennie et al., 2020). The Rayleigh and Mie channels pro-
vide HLOS winds up to 30 km, with a vertical resolution
between 250 m and 2 km, depending on the laser rangebin
configuration.

HLOS wind L2B data from the Aeolus Flight Model
A (FM-A) laser became available shortly after launch
in September 2018, but the data experienced drifts
in bias, and reductions in laser energy and signal to
noise (Liu et al., 2020; Reitebuch et al., 2020; Weiler
et al., 2021). However, initial impact studies showed
positive impact from Aeolus on global NWP (Ren-
nie et al., 2019; Garrett et al., 2020). In June 2019,
power was transferred to the FM-B laser in order to
improve the wind data quality. The Aeolus Rayleigh-clear
and Mie-cloudy winds (L2B10, de Kloe, 2019; de Kloe
et al., 2020) were downloaded from https://earth.esa.int/
eogateway/missions/aeolus spanning the period of August
2–September 16, 2019 for this study, as recommended
by ESA. One major correction applied to the Aeolus
L2B winds by ESA is the M1 bias correction, which
removes systematic errors due to earth-shine in certain
orbit locations, affecting the telescope mirror temperature
stability. The M1 correction combines European Centre
for Medium-range Weather Forecasts (ECMWF) forecast
information with temperature readings across the Aeo-
lus M1 telescope mirror to predict the Aeolus wind bias
(Weiler et al., 2021).

https://earth.esa.int/eogateway/missions/aeolus
https://earth.esa.int/eogateway/missions/aeolus
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The Aeolus L2B data are integrated and assimilated
into the FV3GFS v15.3 global forecast model with the
FV3GFS v16 physics package (Kleist et al., 2021). The
FV3GFS data assimilation system, or Global Statistical
Interpolation (GSI, Kleist et al., 2009) used in this study
employs the 4DEnVar algorithm at C384 (25 km for the
deterministic analysis and forecast) and C192 (50 km for
the 80 ensemble members) horizontal resolution, with 64
vertical levels (Wang and Lei, 2014). The FV3GFS back-
ground winds are interpolated to the three-dimensional
location (latitude, longitude, and height) and time of each
Aeolus wind observation and transformed to the HLOS
wind background equivalent (HLOSb) using

HLOSb = −u sin(𝜑) − v cos(𝜑) (1)

where u is the zonal wind component, v is the meridional
wind component, and 𝜑 is the satellite azimuth angle of
the HLOS measurement. The Aeolus winds are assimilated
as a function of height in the NOAA data assimilation sys-
tem. Considering the horizontal resolution (25 km) of the
FV3GFS model used in this study, the Mie winds were
thinned along track to 90 km horizontal resolution. In
future experiments we may explore the benefit of thinning
Mie winds at higher resolutions on GFS forecasts.

In what follows, the Aeolus observed and FV3GFS-
equivalent HLOS winds are referred to as Aeolus and
FV3GFS winds, respectively. In the discussion of winds
that are not HLOS winds, terms such as u-wind, v-wind, or
wind vector are used.

2.2 Random-error estimates of Aeolus
winds

Although other studies mentioned previously have
focused on assessing Aeolus data quality using multiple
wind references (aircraft, AMV, rawinsonde, etc.), the
characterization of random and systematic errors of Aeo-
lus winds relative to the FV3GFS 6-hr forecast (i.e., back-
ground) are critical for optimizing the impact of Aeolus
winds on NOAA FV3GFS forecasts. In general, data assim-
ilation systems require proper estimation of the error char-
acteristics of the input data sources such as the background
and observations. Any known, large systematic errors
(hereafter biases) should be removed, and the standard
deviation (SD) of the observation random errors includ-
ing instrument and representativeness errors should be
accounted for. In this study, the Hollingsworth–Lonnberg
(HL) method (Hollingsworth and Lonnberg, 1986) is
applied to the sum of these random errors to determine
Aeolus observation errors by analyzing the spatial correla-
tion structure from the random component of differences

between the Aeolus winds and FV3GFS background
winds. It is assumed that there are no correlations between
the random errors of the Aeolus and FV3GFS winds, and
no horizontal correlations between the random errors of
Aeolus winds separated by more than 90 km. It is noted
that Rayleigh winds are the result of averaging along a
90-km accumulation length. As such, some error correla-
tions between adjacent Rayleigh winds would be expected
at the distance of 90 km. Typically, Mie winds are the result
of averaging along a 15-km accumulation length and are
therefore less sensitive to error correlations at 90-km sep-
arations. However, the impact of potential correlation
at 90 km distance on the error estimate is excluded, as
indicated in Equation (3) below. These assumptions are
justified a posteriori by the reasonable error estimate of
FV3GFS background winds as shown below.

The error estimates are calculated for all Aeolus winds
in each layer as follows. The layer centers are defined
by the global average height of the Rayleigh and Mie
winds in each vertical range-bin. First, the spatial vari-
ance of Aeolus observation minus background (O−B) is
calculated, where Aeolus data are not assimilated. Under
the assumption that the Aeolus and FV3GFS background
errors are uncorrelated, the covariance of O−B,

(
𝜎

o−b)2, is
equal to the sum of the variance of the random error of
Aeolus winds and FV3GFS winds,

(
𝜎

o−b)2 =
(
𝜎

o)2 +
(
𝜎

b)2 (2)

where 𝜎o and 𝜎
b are the random error standard devia-

tions of Aeolus winds and FV3GFS background winds,
respectively.

By assumption, at separation distances greater than
90 km, the O−B covariances are estimates of the FV3GFS
error covariance alone and can be extrapolated back to zero
separation to get an estimate of the error variance of the
FV3GFS winds,

(
𝜎

b)2, and then, using Equation (1), the
error variance of the Aeolus winds, (𝜎o)2, may be deter-
mined. Note that this can only be done when using O−B
covariances at separation distances large enough to have
negligible covariances between the Aeolus winds.

Specifically, the sample covariance is calculated from
all innovation pairs with separation distances that fall
within each bin; the bins are centered from 90 to 990 km
with a width of 90 km, (e.g., the first bin is from 45
to 135 km). The sample covariance R is fit to the fol-
lowing function (similar to Bormann et al., 2003) using
unweighted least squares:

Rn =
(
𝜎

b)2 (1 + rn∕L) exp−rn∕L (n = 2,N) (3)

Here L is the FV3GFS background covariance
length scale, n is the bin index (note that bin 1 is
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F I G U R E 1 Vertical distributions
of the random errors (m/s) of Aeolus (a)
Mie and (b) Rayleigh winds estimated
from all Aeolus minus FV3GFS
background winds in each layer using
the Hollingsworth–Lonnberg (HL)
method (solid green line). Also shown,
for the same sample, are the standard
deviation of Aeolus minus FV3GFS
background winds (dashed black line),
the HL estimate of the FV3GFS
background wind error (solid gray line),
and the L2B estimated observation
error (dashed blue line). The period
covered is August 2–September 16, 2019

ignored to exclude impact of potential correlations at
90 km separation distance on the least-squares fit), r
is the average separation distance in bin n, and N is
the total number of bins, 11. See Hollingsworth and
Lonnberg (1986) for further details.

Residual biases in the Aeolus wind O−B innovations
may introduce small spurious correlations (0–0.09). To
reduce the impact of the biases, spurious correlation at
the separation distance of 1,000 km is considered due to
the biases and is removed from the correlations at all
separation distances before the fitting to Equation (3).

Figure 1 shows the random-error estimates in the Aeo-
lus and FV3GFS background winds calculated for August
2–September 16, 2019. The FV3GFS wind error estimates
are ∼2 m/s, which is consistent with typical estimates of
u- and v-wind background error SD (Rennie et al., 2021).
The Mie and Rayleigh wind error estimates are larger,
about 2.5–3.4 m/s and 3.8–6.0 m/s, respectively, and the
Rayleigh wind errors are comparable to errors of AMVs
assimilated in the NOAA global data assimilation system
(Jung et al., 2016). Note that the HL Aeolus error esti-
mates have very similar vertical distributions to the O−B
innovation SD and the L2B estimated uncertainty, but
the L2B uncertainty may be underestimated, particularly
for Rayleigh winds. The HL estimate of the Aeolus wind
errors shown in Figure 1 are used in the analyses of this
study.

2.3 The TLS bias correction

Variational data assimilation minimizes a cost function
and theoretically requires that the observations and the
NWP state are unbiased. Existence of any such biases may

make the analysis sub-optimal (Daley, 1991). To optimize
the impact of Aeolus winds on NWP, any biases between
Aeolus winds and NWP model background winds should
be removed.

Assessing systematic errors after the M1-correction,
Liu et al. (2022) showed that residual biases exist between
the Aeolus Rayleigh and Mie winds and FV3GFS back-
ground winds, and that these biases vary by latitude,
height, and wind speed. Therefore, Liu et al. propose
an additional bias correction for Aeolus wind innova-
tions, that is, for O−B. The bias correction is based on a
total-least-squares (TLS) regression analysis of the biases
between Aeolus and FV3GFS background winds. For each
assimilation cycle, the coefficients are calculated using
the Aeolus and FV3GFS winds from the week before the
current cycle, that is, from the previous 28 cycles. To con-
sider the dependence of the bias on latitude, height, and
orbit phase (ascending or descending), the coefficients are
computed for 19 discrete bins of latitude (centered every
10◦ between 90◦S to 90◦N) and in each layer for ascend-
ing and descending orbits, separately. The coefficients are
linearly interpolated to the latitude of each innovation.
The calculated TLS estimated biases are then subtracted
from each Aeolus wind innovation before assimilation.
Figure 2 shows the zonal mean Rayleigh minus FV3GFS
background winds before and after the TLS bias correc-
tion. Even with the M1 correction applied residual biases
exist: up to −0.9 m/s in the ascending orbit lower tropo-
sphere, and up to 1.8 m/s in the descending orbit trop-
ical upper troposphere/lower stratosphere regions. The
biases are largely removed by the TLS bias correction. The
large speed-dependent biases in Mie winds minus FV3GFS
winds are also removed by the TLS bias correction (see Liu
et al., 2022).
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F I G U R E 2 Latitudinal and height distributions of the mean difference (m/s) for Rayleigh minus FV3GFS winds from September 1–7,
2019 before (top row: a, b) and after (bottom row: c, d) applying the total least-squares (TLS) bias correction in ascending (left column: a, c)
and descending (right column: b, d) orbits

2.4 Experiments and quality control

To assess the benefits of assimilating Aeolus HLOS winds
in the NOAA FV3GFS, three observing-system experi-
ments (OSEs) are performed: the baseline experiment
(BASE) without the assimilation of Aeolus winds; the
experiment AEOM which assimilates the Aeolus winds;
and AEOT which assimilates the Aeolus winds with the
additional TLS bias correction. The three OSEs each assim-
ilate all satellite and conventional observations routinely
assimilated in NOAA operations.

Similar Aeolus data quality control procedures as rec-
ommended by ESA and ECMWF (Rennie et al., 2021)
were implemented to reject the following observations:
HLOS L2B confidence flag “invalid”; HLOS Rayleigh
winds at layers below 850 hPa, L2B uncertainties greater
than 12 m/s, accumulation lengths less than 60 km, and
atmospheric pressure within 20 hPa of topographic surface
pressure; Mie HLOS winds with L2B uncertainties greater

than 5 m/s and accumulation lengths less than 5 km. A
standard gross-check on the O−B (greater than four times
the prescribed Aeolus wind errors shown in Figure 1) is
also applied in the assimilation system.

3 OSE RESULTS

3.1 Global analysis and forecast impact
assessment

The systematic adjustment to the analysis by the Aeolus
winds is illustrated in Figure 3 by the mean differences
between the experiment analyses and the BASE analysis.
The difference between AEOM and BASE shows an evi-
dent impact in the u-wind in the troposphere and lower
stratosphere around the equator, with the largest decrease
in the mean analysis u-wind exceeding 0.5 m/s around
100 hPa. On the other hand, the mean analysis difference
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F I G U R E 3 Zonal mean of analysis differences in u-wind (m/s) for (a) AEOM−BASE, and (b) AEOT−BASE, for the period of August
2–September 16, 2019. The latitudinal bins are centered from 90◦S to 90◦N every 10◦

F I G U R E 4 Profiles of mean
observation minus FV3GFS 6-hr forecast
background (O–B) root-mean-square (RMS)
differences (%) for rawinsonde and aircraft
u-wind (column, a, c, e) and v-wind (column,
b, d, f). RMS differences for AEOM minus
BASE (black lines) and AEOT minus BASE
(green lines) are shown in the Northern
hemisphere (top, a, b), tropics (middle, c, d),
and Southern hemisphere (bottom, e, f).
Horizontal bars denote the confidence
interval at the 95% level in each layer. The
period covered is August 2–September 16,
2019. Negative values imply an improvement
due to the addition of Aeolus observations
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F I G U R E 5 Vertical cross-sections of wind vector forecast root-mean-square error (RMSE) versus forecast hour (verified against
European Centre for Medium-range Weather Forecasts [ECMWF] analysis) in the BASE experiment (top, a, b, c, m/s) for the Southern
hemisphere (left), tropics (center), and Northern hemisphere (right). The RMSE difference with respect to BASE (%) are shown for AEOM
(middle, d, e, f) and AEOT (bottom, g, h, i). The hatched areas are changes with at least 95% statistical significance

between AEOT and BASE shows a much-reduced impact
in the same region. The reduced impact is consistent with
the TLS bias correction removal of residual biases in the
Aeolus wind data, shown in Figure 2b. The mean analy-
sis difference between AEOM and BASE near 60◦S above
500 hPa is also reduced with AEOT. The results suggest
that without the additional bias correction to the Aeo-
lus data, the assimilation of the Aeolus observations may
result in over-estimated wind analysis increments.

Note that for the easterly wind at the equator at
about 16 km (100 hPa), Aeolus HLOS winds are nega-
tive for ascending and positive for descending orbits. The
large positive bias in HLOS O−B in the descending orbit
(Figure 2b) indicates stronger easterly flow observed by
Aeolus than forecast by the FV3GFS model. This leads

to stronger easterlies in the AEOM analysis, and negative
u-wind component AEOM–BASE analysis differences.

Figure 4 shows the differences in the root-mean-square
error (RMSE) fit of the FV3GFS u- and v-wind back-
ground (i.e., 6-hr forecasts) to conventional wind obser-
vations from rawinsonde and aircraft (O−B). Note that
the spatial coverage by the rawinsonde and aircraft wind
observations is irregular in general and quite sparse over
remote regions, including the tropical oceans and the
Southern Hemisphere. Therefore, corresponding statistics
from these samples should be considered representative
of the geographic coverage of the rawinsonde and aircraft
observations only. Similar improvements in the RMSE fits
for both AEOM and AEOT experiments are evident in
the Southern Hemisphere and tropics u-wind. The largest
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F I G U R E 6 Vertical cross-sections of global temperature
root-mean-square error (RMSE) versus forecast hour in (a) the
BASE experiment (K), as well as the RMSE difference with respect
to BASE (%) for (b) AEOM and (c) AEOT. As in Figure 5

reduction in RMSE for the u-wind occurs around 70 hPa
in the tropics, which is about 4% reduction relative to
the BASE RMSE. The RMSE is reduced in the Southern
Hemisphere up to 1.5% throughout the mid-troposphere.
More modest improvement of around 1% in RMSE is
shown in the Southern Hemisphere and tropics for the
v-wind at 200–300 hPa. It is noted that impact of the bias
correction on the RMSE values for O−B of conventional
winds is neutral in all regions. This could be partly related

F I G U R E 7 Vertical cross-sections of global relative humidity
root-mean-square error (RMSE) versus forecast hour in (a) the
BASE experiment (%), and the differences in RMSEs with respect to
BASE (%) for (b) AEOM and (c) AEOT. As in Figure 5

to the fact that the conventional wind observations are
sparse and limited to specific geographic areas within the
tropics, whereas the bias correction is based on Aeolus
minus FV3GFS background winds across the entire trop-
ics. The RMSE is not noticeably reduced in the Northern
Hemisphere, and this is expected due to the dense cover-
age of rawinsonde, aircraft, and other in situ data types that
strongly impact the analyses.
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F I G U R E 8 Anomaly correlation (AC, top panel) of FV3GFS 0- to 10-day 500 hPa height forecasts (verified against European Centre for
Medium-range Weather Forecasts [ECMWF] analysis) in the BASE, AEOM, and AEOT experiments for (a, c) Southern and (b, d) Northern
hemisphere. The differences in the ACs of AEOM and AEOT versus BASE are shown in the bottom panel, with bars representing the 95%
confidence interval

The wind vector forecast RMSE from 50 to 1,000 hPa
for Day 1–10 in BASE, verified against the ECMWF anal-
ysis, for the Southern Hemisphere, tropics, and Northern
Hemisphere regions is shown in Figure 5. The differences
in wind vector forecast RMSE between AEOM and BASE,
and between AEOT and BASE are also shown. In general,
the Aeolus impact on RMSE is positive in AEOM, with
the largest error reduction (4%) seen above 100 hPa in
the tropics and about 2.5% in the Southern and Northern
Hemisphere. However, some minor degradation is seen
in the tropics and the Southern Hemisphere, particularly
at longer lead times. In AEOT, larger positive impacts
are seen particularly in the troposphere and lower strato-
sphere in each region, at all forecast lead times. The degra-
dations in AEOM are completely removed and turn to
improvements in AEOT. The error reduction is increased
from less than 1% to about 1.5% at longer forecast lead
times at all levels in the Northern Hemisphere in AEOT. A
large part of the improvement is statistically significant at
the 95% significance level.

Figure 6 shows the BASE temperature forecast RMSE
and differences for AEOM and AEOT, averaged globally.
Aeolus winds have a positive impact on the tempera-
ture forecast. The RMSE is reduced by up to 1% in the
troposphere and about 2.5% in the lower stratosphere at
short-range forecast times in AEOM. In AEOT, the RMSE
is further reduced in the troposphere at short-range fore-
cast times and is also improved at longer forecast times
compared with AEOM. The maximum RMSE reduction

reaches about 2.5% in the lower stratosphere and about 1%
in the troposphere.

Furthermore, Aeolus winds substantially reduce the
relative humidity forecast RMSE in AEOM compared to
BASE (Figure 7). The RMSE is reduced up to 8% above
200 hPa for all forecast lead times, and about −0.5%, in
the troposphere at short lead times. In AEOT, the pos-
itive impact is slightly improved at longer lead times.
The improved RH forecast in the upper troposphere/lower
stratosphere is likely related to the improved wind analy-
sis as demonstrated in tropical regions, where temperature
sounders have less impact on the upper-level wind fields
compared with extratropical regions which are highly con-
strained by geostrophic balance. It should also be noted
however, that there remains high uncertainty in the anal-
ysis of humidity in these regions due to many factors
including the low volume of humidity observations and
their higher uncertainty due to the overall low absolute
humidity.

Impacts on the 500-hPa-height Anomaly Correlation
(AC) in the Northern Hemisphere for both AEOM and
AEOT are neutral, while some positive (not statistically
significant) improvement is shown after Day 4 in the
Southern Hemisphere in AEOT, compared to more neutral
impacts for AEOM (Figure 8).

The forecast skill scorecards for AEOM and AEOT
versus BASE (Figure 9) provide a comprehensive evalu-
ation of the global forecast skill out to 10 days in terms
of RMSE and AC. The Aeolus winds have statistically
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F I G U R E 9 NOAA/NCEP 1- to 10-day global forecast skill scorecard for the FV3GFS forecasts comparing (a) AEOM versus BASE, and
(b) AEOT versus BASE. European Centre for Medium-range Weather Forecasts (ECMWF) analysis is used in the verification. The symbol
legend is shown above the panels
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F I G U R E 10 The difference summary
assessment metric (SAM) overall forecast
scores for AEOM, and AEOT versus BASE
experiments. The scores are shown for (a)
forecast parameters of temperature (temp),
geopotential height (HGT), vector-wind
(wind) and relative humidity (RH), (b)
vertical levels, (c) geographic regions, and
(d) overall performance of AEOM and
AEOT. The gray areas indicate the 95%
confidence level under the null hypothesis
that there is no difference between
experiments for this metric. In addition, the
estimated uncertainty at the 95% level is
indicated by small error bars at the ends of
the color bars. Two normalizations are used,
the empirical cumulative density function
(ECDF, colors) and rescaled-minmax
normalization (black outline). Details can
be found in Hoffman et al. (2018). A value of
0.03, for example, indicates the average
normalized statistic over all metrics is better
(greater) by 0.03 than BASE. Under the null
hypothesis that there are no differences, all
SAMs would be 0.5, so a 0.03 improvement
can be considered a 6% improvement
(0.03/0.5) in normalized scores. NH,
Northern hemisphere; SH, Southern
hemisphere

significant positive impacts on forecast skill for wind and
temperature in the tropics and the Southern Hemisphere
in AEOM, for Days 1–3, but less positive impacts in the
Northern Hemisphere and in North America. In AEOT,
the application of the TLS bias correction leads to further
improvement in both number of metrics and magnitude
in all regions, for example more significant improvement
is seen in wind and temperature forecasts throughout the
troposphere from Days 1–10 in the Southern Hemisphere.

To quantify the scorecard results overall, the Sum-
mary Assessment Metric (SAM) is computed for the BASE,
AEOM and AEOT experiments. The SAM illustrates the
overall forecast skill by normalizing the AC and RMSE
values for all experiments, parameters, levels, and lead
times with respect to the computed empirical cumulative
density function (ECDF) (Hoffman et al., 2018). Assuming
a null hypothesis that the mean of the ECDF for all exper-
iments is 0.5, positive or negative impact on forecast skill
can be determined for each forecast experiment depending
on whether the null hypothesis is rejected and the mean
is higher (positive impact) or lower (negative impact) than
0.5. Figure 10 shows the difference in SAM scores for
AEOM and AEOT with respect to BASE separately for each

parameter (temperature, geopotential height, wind, and
relative humidity), each vertical level, and each region, as
well as the overall difference. Values above 0.0 demon-
strate an increase in the mean of the normalized scores and
improvement of the forecast versus the BASE, while the
gray-shaded region represents the 95% significance level.
Aeolus winds in general have a positive impact on the
forecast of wind, temperature, height, and relative humid-
ity at all vertical levels and for all the regions, with the
largest impacts in the Southern Hemisphere for the AEOT
experiment. The overall improvement by Aeolus winds
for AEOM and AEOT is about 4% and 6.5%, respectively
(Figure 10d), illustrating the increased forecast skill with
the TLS bias correction.

3.2 Tropical cyclone forecast impact
assessment

The impact of Aeolus HLOS wind assimilation on trop-
ical cyclone (TC) forecasts in the Eastern Pacific (EP)
and Atlantic (AL) basins is assessed using the TC
best track data from the NOAA National Hurricane
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F I G U R E 11 Means (solid lines) and confidence intervals (full width) at the 95% significance level (dashed lines) of FV3GFS Day-0–6
track forecast errors (top, a, b) in nautical miles (nm), and the track error ratios relative to BASE (bottom, c, d) of tropical cyclones in the
eastern Pacific (left, a, c) and Atlantic (right, b, d) basins during the experiment period from BASE, AEOM, and AEOT. The black dots in the
lower panels show the number of cases (right axis). The cyclones assessed include Flossie, Gil, Henriette, Ivo, Juliette, Akoni, Kiko, Mario, and
Lorena in the eastern Pacific basin, and Dorian, Erin, Fernand, Gabrielle, Humberto, Jerry, Imelda, Karen, and Lorenzo in the Atlantic basin

Center (NHC) (https://www.nhc.noaa.gov/data/). During
the experiment period, there were 18 named TCs. The
average errors in the forecasts of TC track are shown in
Figure 11. Aeolus impact on TC track forecast errors is
mixed in the EP basin and positive after Day 2 in the AL
basin in AEOM, compared to BASE. In AEOT, the track
forecast errors are noticeably reduced in both basins. For
example, the track error is reduced by about 15% in the EP
basin and by ∼5% to 15% in the AL basin after Day 2. The
track improvements are marginally statistically significant
at the 95% level for AEOT. Although the results are encour-
aging, more TC cases are needed to achieve more robust
conclusions about Aeolus impact on TC forecast track.

4 SUMMARY AND CONCLUSIONS

In this study, the impact of the Aeolus L2B10 HLOS winds
assimilation into NOAA’s global data assimilation sys-
tem for the FV3GFS is assessed for the period of August
2–September 16, 2019. The random errors or weighting of
Aeolus winds are estimated by the HL method and suggest

that the L2B HLOS wind uncertainty underestimates Aeo-
lus observation errors. Since vertical profiles of HL error
estimates have the same shape, but larger amplitude com-
pared to the L2B estimated errors, it may be useful to scale
the L2B errors for use in data assimilation systems. Two
impact experiments were performed: the first using the
M1-corrected L2B HLOS wind data, and the second apply-
ing additional bias correction based on the TLS regres-
sion approach. The experiments’ forecasts were verified
against ECMWF analyses, and the forecast skill was com-
pared to the performance of a baseline experiment which
assimilated all observations operationally assimilated at
NOAA but not the Aeolus winds.

The results from the OSEs demonstrate that the Aeo-
lus winds improve NOAA global forecast skill in terms of
(1) 6-hr forecast verified against conventional wind obser-
vations from rawinsondes and aircrafts; (2) the Day 1–10
forecasts verified against ECMWF analyses; and (3) the
forecast of TC track in the Eastern Pacific and Atlantic
basins verified against NOAA/NHC best track data. The
most prominent impacts are seen in the tropical upper tro-
posphere/lower stratosphere wind forecast, and Southern

https://www.nhc.noaa.gov/data/
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Hemisphere wind, temperature and height forecasts. Up
to a 4% reduction in wind vector forecast RMSE is seen
from 50 to 100 hPa, in both regions. Forecast impact in the
Northern Hemisphere forecast is positive with a smaller
magnitude. The assimilation of Aeolus reduces the TC
track forecast error by 5%–20%, with the largest reduction
occurring in the Day-5 forecast. It is worth highlighting
that although the ESA M1 correction to the Aeolus HLOS
data dramatically improves Aeolus L2B data quality, the
forecast skill is considerably improved after applying the
additional TLS bias correction. It is noted that a longer
period and other seasons could be used in future experi-
ments to obtain more statistically robust results.

The Aeolus mission is helping to address the 3D-winds
gap in the satellite global observing system. Although
the Aeolus HLOS wind observations are not operationally
assimilated at NOAA, the assessment provides critical
results for understanding the value and impact of Doppler
wind lidar data on NOAA’s global forecasts, and will accel-
erate the exploitation of any future lidar wind observations
from space.
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